一、复合函数定义:设y=f(u)的定义域为A,u=g(x)的值域为B,若AB,则y关于x函数的y=f[g(x)]叫做函数f与g的复合函数,u叫中间量.
二、复合函数定义域问题:(一)例题剖析:
(1)、已知f(x)的定义域,求fg(x)的定义域
思路:设函数f(x)的定义域为D,即xD,所以f的作用范围为D,又f对g(x)作用,作用范围不变,所以g(x)D,解得xE,E为fg(x)的定义域。
例1.设函数f(u)的定义域为(0,1),则函数f(lnx)的定义域为_____________。解析:函数f(u)的定义域为(0,1)即u(0,1),所以f的作用范围为(0,1)又f对lnx作用,作用范围不变,所以0lnx1解得x(1,e),故函数f(lnx)的定义域为(1,e)
1,则函数ff(x)的定义域为______________。x11解析:先求f的作用范围,由f(x),知x1
x1例2.若函数f(x)即f的作用范围为xR|x1,又f对f(x)作用所以f(x)R且f(x)1,即ff(x)中x应满足x1
f(x)1x1即1,解得x1且x2
1x1故函数ff(x)的定义域为xR|x1且x2(2)、已知fg(x)的定义域,求f(x)的定义域
思路:设fg(x)的定义域为D,即xD,由此得g(x)E,所以f的作用范围为E,又f对x作用,作用范围不变,所以xE,E为f(x)的定义域。
例3.已知f(32x)的定义域为x1,2,则函数f(x)的定义域为_________。解析:f(32x)的定义域为1,2,即x1,2,由此得32x1,5所以f的作用范围为1,5,又f对x作用,作用范围不变,所以x1,5
即函数f(x)的定义域为1,5
x2例4.已知f(x4)lg2,则函数f(x)的定义域为______________。
x82x2x20解析:先求f的作用范围,由f(x4)lg2,知2x8x82解得x44,f的作用范围为(4,),又f对x作用,作用范围不变,所以
2x(4,),即f(x)的定义域为(4,)
(3)、已知fg(x)的定义域,求fh(x)的定义域
思路:设fg(x)的定义域为D,即xD,由此得g(x)E,f的作用范围为E,又f对h(x)作用,作用范围不变,所以h(x)E,解得xF,F为fh(x)的定义域。
例5.若函数f(2x)的定义域为1,1,则f(log2x)的定义域为____________。
解析:f(2)的定义域为1,1,即x1,1,由此得2,2
2xx11f的作用范围为,2
21又f对log2x作用,所以log2x,2,解得x2即f(log2x)的定义域为
2,4
2,4
评注:函数定义域是自变量x的取值范围(用集合或区间表示)f对谁作用,则谁的范围是f的作用范围,f的作用对象可以变,但f的作用范围不会变。利用这种理念求此类定义域问题会有“得来全不费功夫”的感觉,值得大家探讨。
三、复合函数单调性问题
(1)引理证明已知函数yf(g(x)).若ug(x)在区间(a,b)上是减函数,其值域为(c,d),又函数yf(u)在区间(c,d)上是减函数,那么,原复合函数yf(g(x))在区间(a,b)上是增函数.
证明:在区间(a,b)内任取两个数x1,x2,使ax1x2b
因为ug(x)在区间(a,b)上是减函数,所以g(x1)g(x2),记u1g(x1),
u2g(x2)即u1u2,且u1,u2(c,d)
因为函数yf(u)在区间(c,d)上是减函数,所以f(u1)f(u2),即
f(g(x1))f(g(x2)),
故函数yf(g(x))在区间(a,b)上是增函数.(2).复合函数单调性的判断
复合函数的单调性是由两个函数共同决定。为了记忆方便,我们把它们总结成一个图表:
yf(u)ug(x)yf(g(x))增增增减减增减减减增以上规律还可总结为:“同向得增,异向得减”或“同增异减”.(3)、复合函数yf(g(x))的单调性判断步骤:确定函数的定义域;
将复合函数分解成两个简单函数:yf(u)与ug(x)。分别确定分解成的两个函数的单调性;
若两个函数在对应的区间上的单调性相同(即都是增函数,或都是减函数),则复合后的函数yf(g(x))为增函数;若两个函数在对应的区间上的单调性相异(即一个是增函数,而另一个是减函数),则复合后的函数yf(g(x))为减函数。
(4)例题演练
例1、求函数ylog1(x2x3)的单调区间,并用单调定义给予证明22解:定义域x2x30x3或x1
单调减区间是(3,)设x1,x2(3,)且x1x2则
y1log1(x12x13)y2log1(x22x23)
2222(x12x13)(x22x23)=(x2x1)(x2x12)
∵x2x13∴x2x10x2x120∴(x12x13)>(x22x23)又底数0∴y2y10即y2y1∴y在(3,)上是减函数2222112同理可证:y在(,1)上是增函数
因篇幅问题不能全部显示,请点此查看更多更全内容